
LockedDown: Exploiting Contention on Host-GPU PCIe Bus for Fun and Profit

Mert Side
Texas Tech University
Lubbock, TX, USA
mert.side@ttu.edu

Fan Yao
University of Central Florida

Orlando, FL, USA
fan.yao@ucf.edu

Zhenkai Zhang∗
Clemson University
Clemson, SC, USA

zhenkai@clemson.edu

Abstract—The deployment of modern graphics processing
units (GPUs) has grown rapidly in both traditional and
cloud computing. Nevertheless, the potential security issues
brought forward by this extensive deployment have not been
thoroughly investigated. In this paper, we disclose a new
exploitable side-channel vulnerability that ubiquitously exists
in systems equipped with modern GPUs. This vulnerability is
due to measurable contention caused on the host-GPU PCIe
bus. To demonstrate the exploitability of this vulnerability,
we conduct two case studies. In the first case study, we
exploit the vulnerability to build a cross-VM covert channel
that works on virtualized NVIDIA GPUs. To the best of our
knowledge, this is the first work that explores covert channel
attacks under the circumstances of virtualized GPUs. The
covert channel can reach a speed up to 90 kbps with a
considerably low error rate. In the second case study, we
exploit the vulnerability to mount a website fingerprint-
ing attack that can accurately infer which web pages are
browsed by a user. The attack is evaluated against popular
browsers like Chrome and Firefox on both Windows and
Linux, and the results show that this fingerprinting method
can achieve up to 95.2% accuracy. In addition, the attack
is evaluated against Tor browser, and up to 90.6% accuracy
can be achieved.

1. Introduction

Modern graphics processing units (GPUs) have be-
come increasingly popular over the past decade. On
the one hand, they are needed for performing resource-
intensive visual computing tasks such as ultra-high-
definition video decoding and high-quality 3D graphics
rendering. On the other hand, along with the development
of general-purpose GPU programming models like CUDA
and OpenCL, modern GPUs have also been extensively
used for performing massively parallel computing tasks
like physical dynamics simulation, data mining, and deep
neural network training. In fact, very powerful GPUs de-
signed exclusively for parallel computing have been built
and favored in supercomputers. With the advent of the era
of cloud computing, such powerful GPUs have also been
widely deployed in data centers and offered to customers
by major cloud service providers, such as Amazon EC2,
Google Compute Engine, and Microsoft Azure, using
state-of-the-art GPU virtualization techniques.

∗. Part of the work was done while the author was affiliated to Texas
Tech University.

Despite the rapidly growing use of GPUs in traditional
and cloud computing platforms, the studies on the security
of GPUs appear to be lagging behind. Many of the GPU
security implications are often overlooked and/or not well
understood. Some recent investigations have reflected the
fact that GPUs indeed have many exploitable vulnerabil-
ities [11], [19], [24], [29], [39], [40], [65], [66]. These
studies signify that there may exist many other security
vulnerabilities in GPUs as well as their ecosystems and
strongly argue for more research efforts to discover any
possible vulnerabilities for a better understanding of the
GPU security.

In this paper, we examine the under-explored attack
surface of host-GPU communication and disclose a new
side-channel vulnerability that can be exploited to mount
realistic attacks in the contexts of both traditional and
cloud computing. In particular, we have discovered that
contention on the PCIe bus, that is, the standard intercon-
nect between a GPU and its host system, is measurable in
the form of data transfer latencies. Because the host-GPU
PCIe bus is shared among processes running in different
security domains, measurable contention on this bus can
be leveraged as a side-channel to leak information across
strong isolation boundaries. To deliberately cause such
contention for exploitation, however, continuous PCIe
congestion is needed, which is not easy to achieve in
reality due to the high-speed nature of PCIe. With the help
of the page-locked memory allocation and transfer feature
in CUDA, we make it possible to induce such contention.

To demonstrate the exploitability of this contention-
based side-channel vulnerability, we have conducted two
attacks. The first one is to construct a covert commu-
nication channel that enables data exfiltration between
processes having access to the same physical GPU. Dif-
ferent from the prior work that assumes a native execution
environment without any GPU resource partitioning [39],
we show that our covert channel works effectively and ro-
bustly in realistic cloud computing settings, where server-
grade GPUs (e.g., Tesla V100) are used and the state-
of-the-art NVIDIA GPU virtualization technique is em-
ployed. To the best of our knowledge, this is the first
work that explores covert channel attacks under the cir-
cumstances of virtualized GPUs. In addition, our covert
channel is not affected by the mitigation approach pro-
posed in [57], because that countermeasure only partitions
cache and memory to effectively thwart the covert channel
described in [39] but has no effect on the PCIe contention
vulnerability exploited by ours.

The second exploitation we have conducted is a web-



site fingerprinting attack that deduces which websites have
been visited by a user. Since all major web browsers, such
as Google Chrome, Mozilla Firefox, and Microsoft Edge,
leverage the GPU to help accelerate web page rendering,
when a user opens a web page, the browser will generate
a certain GPU workload corresponding to the web page
rendering. In other words, there will be traffic on the host-
GPU PCIe bus when a web page is rendered. We show that
rendering different web pages can create distinguishable
patterns of PCIe bus traffic (and thus PCIe contention),
which can be exploited to fingerprint the corresponding
web pages accurately, even in the anonymity network
scenario where Tor is used.

In summary, the main contributions of this paper are:

• We disclose a new exploitable side-channel vulner-
ability that ubiquitously exists in systems equipped
with modern GPUs. This vulnerability is due to
measurable contention caused on the host-GPU
PCIe bus. To create such contention for exploita-
tion, we identify that the page-locked memory
allocation and transfer feature in CUDA can be
leveraged.

• We exploit the newly discovered vulnerability
to construct a covert communication channel for
data exfiltration across isolation boundaries es-
tablished by up-to-date virtualization techniques.
This covert channel can circumvent all the ex-
isting defenses against data exfiltration in cloud
computing settings, and it can reach a speed up
to 90 kbps with a considerably low error rate.
Moreover, this covert channel is much more robust
in practice compared to the one proposed in [39]
under similar circumstances.

• We exploit the newly discovered vulnerability to
implement a website fingerprinting attack that can
accurately infer the web browsing activities of a
user. We evaluate this website fingerprinting attack
against popular browsers like Chrome and Firefox
on both Linux and Windows. The results show
that this fingerprinting method is highly effective
where up to 95.2% accuracy can be achieved.
We also evaluate this website fingerprinting attack
against Tor in the anonymity network scenarios,
and up to 90.6% accuracy can be achieved.

Notice that, very recently, Tan et al. also exploited
PCIe congestion to mount side-channel attacks [51]. Our
work and [51] were conducted completely concurrently
and independently. Although similar, there are still many
differences. Firstly, our and their approaches to contention
generation differ. Our work focuses on communication
between the CPU and the GPU through dedicated PCIe
lanes, while the work in [51] focuses on exploiting inter-
PCIe device communication over shared PCIe lanes. How-
ever, in reality, GPUs are nearly always installed on the
PCIe slot that is connected to the CPU via dedicated lanes,
as illustrated in Figure 1.1 In such standard scenarios, no
PCIe devices (e.g., NVMe or RDMA NIC) will compete
with the GPU for PCIe bandwidth no matter how they are

1. Usually, the first one or two PCIe slots on a motherboard are for
dedicated PCIe lanes, which are sometimes called primary PCIe, and the
rest of the slots are connected to PCH/PCIe switch(es).

connected to the host (e.g., directly via dedicated lanes or
indirectly via PCH). Therefore, the GPU-NIC scenarios
studied in [51] may be very uncommon in practice. On
the contrary, our work is performed in realistic setups
where the GPU uses dedicated PCIe lanes and the sys-
tem hardware is not intentionally arranged. Secondly, the
mounted attacks are not exactly the same. Although the
website fingerprinting attack is studied in both our work
and [51], we also investigate the first virtualized GPU-
based cross-VM covert channel while the work in [51]
studies two other attacks that are to steal neural networks
and keystrokes. Moreover, in terms of the same website
fingerprinting attack, our work studies more GPUs with
more web browsers (including Tor) under both Windows
and Linux to provide more insights, while the work in [51]
only inspects a single GPU using Chrome under Linux.

The rest of this paper is organized as follows: Sec-
tion 2 lays the necessary background; Section 3 introduces
the contention-based side-channel vulnerability; Section 4
and Section 5 describe two exploitations of this newly
discovered vulnerability in the contexts of cloud and tra-
ditional computing respectively; Section 6 proposes some
potential countermeasures; Section 7 gives the related
work; and Section 8 concludes this paper.

2. Background

In this section, we describe some background knowl-
edge about modern GPUs as well as the GPU program-
ming model. We also briefly present some information on
the PCIe bus that connects a GPU to its host system. In
addition, we discuss the GPU virtualization with a focus
on how NVIDIA implements it.

2.1. GPU Architecture and Programming Model

Modern GPUs have evolved from graphics accel-
erators to highly parallel many-core systems that have
been used for a wide range of non-graphics applications.
In general, a GPU consists of a number of streaming
multiprocessors (SMs), each of which can typically run
thousands of threads. Due to the large number of threads
that can simultaneously run on a GPU, there is a demand
for very high memory bandwidth.

To meet the potentially high memory bandwidth de-
mands, GPUs are often equipped with a large amount of
off-chip memory. Such a GPU memory is currently of
the type GDDR5(X) or GDDR6(X) tailored for providing
high bandwidth. Similar to the CPU, caches are utilized
in the GPU as well to hide the latency of GPU memory
accesses. There are local L1 caches in each SM, and there
is also an L2 cache shared by all the SMs.

As shown in Figure 1, the GPU is connected to the
host side through a PCIe bus which is described later
in more detail. The CPU communicates with the GPU
via memory-mapped input/output (MMIO). There are also
direct memory access (DMA) engines for transferring
large amounts of data over the PCIe bus between the host
memory and the GPU memory.

Originally, GPUs could only be programmed using
certain APIs such as OpenGL and DirectX for rendering
2D and 3D graphics. As the need for leveraging GPUs
to perform massively parallel computing grows, multiple



general-purpose GPU programming models have been
developed. Among all these models, CUDA developed by
NVIDIA is the most prevailing one.

The CUDA programming model allows heterogeneous
parallel computing that involves both the CPU and the
GPU. The CPU is in charge of the initiation of paral-
lel computing on the GPU, for which it specifies the
needed computation in the form of a kernel function
and manages the GPU memory allocation/deallocation.
Before launching the kernel function on the GPU, the
CPU needs to send the needed data over the interconnect
to the GPU. When the kernel function is launched, it
is executed by a large number of GPU threads. The
threads are grouped into warps that are scheduled to run
on SMs. After the computation is finished, the CPU can
retrieve the results from the GPU over the interconnect. In
terms of transferring data between the CPU and GPU, a
programmer often uses two functions provided by CUDA,
which are cudaMemcpy() in its high-level API (CUDA
Runtime API) and cuMemcpy() in its low-level API
(CUDA Driver API). In this paper, we mainly use the
cudaMemcpy() function in the CUDA Runtime API.

2.2. PCIe Bus

Peripheral Component Interconnect Express (PCIe) is
an interface standard for connecting fast I/O devices. It
has been developed and maintained by the PCI Special
Interest Group (PCI-SIG) as the successor to the older
PCI interface [55]. Instead of a shared parallel bus of
PCI, PCIe uses high-speed point-to-point serial buses.
Currently, PCIe is the de facto interface to many high-
speed peripherals, including GPU, RAID controller, and
NVMe SSD, and it has been universally used on many
personal computer and server motherboards.

Although PCIe is based on point-to-point communi-
cation, its topology is actually a tree structure, where the
root is a component named root complex that connects
the CPU and memory system to a PCIe switch. The PCIe
switch creates multiple PCIe endpoints to which hardware
devices can be attached. The communication between two
PCIe interfaced devices is first negotiated to form a point-
to-point interconnect referred to as a PCIe link. A PCIe
link consists of one or more lanes, and each lane carries a
dual-unidirectional byte stream. Depending on the specific
implementation, a PCIe link can have 1, 2, 4, 8, or 16
lanes. Newer CPUs also have a limited number of PCIe
lanes dedicated to latency-sensitive devices such as GPUs
(e.g., Intel Comet Lake Core processors have up to 16
lanes of PCIe 3.0 and AMD Ryzen 5000 series processors
have up to 24 lanes of PCIe 4.0), and these lanes are
directly connected to the root complex. Note that a link
having N lanes is designated as ×N . Figure 1 depicts a
typical PCIe topology.

In general, the first one or two PCIe slots on a mother-
board are connected to the GPU via dedicated PCIe lanes
which are typically referred to as the primary PCIe slot.
Any additional slots on a given motherboard need to go
through PCIe switches commonly located in the Platform
Control Hub (PCH) which has rather limited bandwidth.
Both NVIDIA and AMD GPU’s user manuals suggest
connecting their devices to the primary PCIe slots on a
given motherboard as shown in Figure 1. Therefore, for

CPURoot Complex

Memoy
Memory

PCIe Device
(GPU) PCIe Switch

PCIe Device PCIe Device

DMA Engines

Figure 1: The PCIe topology.

a typical setup (i.e., Intel Comet Lake Core processors)
equipped with a GPU, an RDMA NIC and/or an NVMe
SSD, the GPU will be connected to the CPU via dedicated
PCIe lanes, and the RDMA NIC and SSD will not share
the lanes with and interfere with the GPU. (The NVMe
SSD is usually connected to the PCH, and the RDMA
NIC may be connected to the CPU through another group
of dedicated lanes.)

The PCIe protocol mainly consists of three layers,
which are the transaction layer, data link layer, and physi-
cal layer. The transaction layer is responsible for creating
PCIe requests and completion transactions via transaction
layer packets (TLPs). A TLP consists of a header, an
optional data payload, and an optional TLP digest. If a
TLP has a data payload, the size of the data payload must
be a multiple of four bytes without exceeding 40962. The
data link layer is responsible for ensuring the integrity and
ordering of TLPs via an error detection and correction
mechanism and a sequence number. The physical layer
sends and receives all the data transferred across the PCIe
links.

2.3. GPU Virtualization

Virtualization plays an important role in cloud com-
puting, and has become the essential technology to en-
able sharing various computing resources with multi-
ple parties in an effective, efficient, and secure manner.
Infrastructure-as-a-Service (IaaS) clouds such as Amazon
EC2, Google Compute Engine, and Microsoft Azure per-
vasively rely on virtualization to offer users CPU, storage,
and networking resources on demand. Although modern
GPUs appear hard to virtualize, as the need for using
GPUs in cloud computing continuously grows, several
GPU virtualization techniques have emerged [9], [36], and
some of them have been employed by major cloud service
providers [2], [13], [38].

In general, GPU virtualization techniques can be di-
vided into four classes, which are device emulation, driver
paravirtualization, fixed pass-through, and mediated pass-
through [36]. Although techniques based on device em-
ulation and driver paravirtualization are relatively easy
to implement, they usually introduce large performance
overheads and are not used in practice [9]. By contrast,
techniques based on fixed or mediated pass-through can
achieve high performance and fidelity, and they are the

2. The PCIe specification also defined a parameter named maximum
payload size (MPS) to further restrict the maximum allowable TLP
payload size.



commonly used ones. While fixed pass-through gives a
virtual machine (VM) fully exclusive access to a physical
GPU, mediated pass-through facilitates Single Root I/O
Virtualization (SR-IOV) capable devices to expose them-
selves as several devices.

NVIDIA implements and offers mediated pass-through
GPU virtualization techniques umbrellaed under the
NVIDIA virtual GPU (vGPU) architecture [41]. The
NVIDIA vGPU architecture specifically centers on a vir-
tual GPU manager program that runs along with a hyper-
visor. The virtual GPU manager is responsible for creating
vGPU devices and partitioning the GPU memory for the
created vGPUs. Each vGPU can be assigned to a VM by
the hypervisor, and from the perspective of the VM, the
assigned vGPU appears like a directly attached physical
GPU. Figure 2 illustrates the NVIDIA vGPU architecture.

Physical GPU

Hypervisor OS

Schedule

Virtual GPU Manager

GPU Engines

vGPU #1 vGPU #2 vGPU #3 vGPU #N

VM #1 VM #2 VM #3 VM #N

Memory
Partition

Memory
Partition

Memory
Partition

Memory
Partition

...

...

GPU
Driver

GPU
Driver

GPU
Driver

GPU
Driver

SR-IOV – mediated pass-through

Figure 2: NVIDIA vGPU architecture.

Prior to the Ampere architecture, all the NVIDIA
GPUs that can be virtualized leverage only temporal iso-
lation to share the GPU hardware resources (except for
the GPU memory, which is spatially partitioned) among
the vGPUs. There is a scheduler that assigns each vGPU
a time slice, and in the assigned time slice, the vGPU can
have exclusive access to many of the GPU resources (e.g.,
3D graphics engines and video codec engines). The time
slices may have different lengths, and the length of a time
slice may be adjusted dynamically. There are also certain
resources that can be used by vGPUs without temporal
isolation, and one example is the copy engines for data
transfers.

With the Ampere architecture, NVIDIA further intro-
duces a new feature named multi-instance GPU (MIG)
to enable the virtual GPU manager to fully partition the
hardware resources (e.g., SMs and L2 cache) of a server-
grade GPU into several instances. At the time of this
writing, MIG is still in its infancy, and there are only two
GPU models, the NVIDIA A30 and A100, that support
this technology, which has not been widely deployed.

3. Contention on Host-GPU PCIe Bus

As the host-GPU PCIe bus is responsible for trans-
ferring data between the host side and the GPU device,
we anticipate that contention on this bus can lead to
increased data transfer latencies. To make the effect of
bus contention observable, we need to find an approach
to continuously impose congestion on this bus. In this sec-
tion, we demonstrate that with the help of the page-locked

memory allocation feature in CUDA, we can repeatedly
congest the host-GPU PCIe bus such that the use of the
bus by others can be detected and measured quantitatively.

3.1. Page-Locked Memory Allocation in CUDA

For the purpose of amplifying the effect of contention
on the host-GPU PCIe bus, we attempt to exhaust the
bandwidth of the bus as much as possible. To this end, we
leverage the cudaMemcpy() function to continuously
perform data transfers from the host to the GPU via the
bus. (We focus only on the host-to-GPU transfer direction
in this paper, but note that the opposite direction can be
identically used.) However, we find that it may not work
as expected if the data to be transferred naively resides in
regular host memory pages.

As mentioned in Section 2, DMA takes charge of
the host-GPU data transfers on the PCIe bus. Essentially,
DMA operates on physical (instead of virtual) addresses
directly. To avoid being potentially disrupted by virtual
memory management operations like swapping, DMA
requires that the memory pages corresponding to the
DMA buffer be locked in the host memory, which means
that the physical locations of the buffer are immune to
any paging activities. Under the circumstances where we
need to transfer a piece of data residing in regular host
memory pages to the GPU memory, the CUDA runtime
first copies the data into a page-locked memory buffer that
is temporarily allocated and then uses DMA to transfer the
data from this buffer to the GPU memory. This two-step
process is illustrated in Figure 3 (a). However, the extra
copy adds delays to the cudaMemcpy() function, which
greatly reduces the achievable bandwidth consumption.
For example, the NVIDIA Quadro RTX 6000 uses PCIe
3.0 ×16 whose theoretical bandwidth is 15.8 GB/s, and
when we use the cudaMemcpy() function to continu-
ously move data in regular pages to this GPU, only about
30% of the bandwidth (4.6 GB/s) is consumed. As shown
in Section 3.2, light congestion like this cannot enable us
to stably measure contention on the bus.

Host Data

Host

DMA Buffer

GPU Memory

GPU

DMA

page-locked

regular

(a) Two-step data transfer.

Host

Host Data

GPU Memory

GPU

DMA

page-locked

(b) Direct data transfer.

Figure 3: CUDA runtime data transfers.

Interestingly, CUDA has a feature that can allow a
user to directly request allocation of page-locked mem-
ory through the cudaMallocHost() function or the
cudaHostAlloc() function. If the data to be trans-
ferred is already in such page-locked memory, the CUDA
runtime will not involve any extra memory buffer but
instead just uses DMA to copy the data from the host
to the GPU, as shown in Figure 3 (B). By exploiting this
direct data movement, we find that heavy congestion can
be imposed on the host-GPU PCIe bus. For example, in
case of the NVIDIA Quadro RTX 6000 being tested, we
observe that more than 77% of the bandwidth (12.2 GB/s)



is consumed when page-locked memory is leveraged. As
demonstrated later, such heavy congestion enables us to
measure contention caused by other uses of the bus in a
stable way.

3.2. Contention Measurement

Having an approach to heavily congesting the host-
GPU PCIe bus, we verify our anticipation that con-
tention on the bus can lead to increased data transfer
latencies. To this end, we use a CUDA program Alice
that measures how much time it takes when using the
cudaMallocHost() function to send 32 KB data to the
GPU under different scenarios. We choose to send 32 KB
data based on our observations from experiments shown
in Figure 7 and Figure 10. We simply use the RDTSCP
instruction to measure the time in clock cycles for each
cudaMemcpy() function invocation. We test two cases
where the 32 KB data resides in page-locked memory in
one case and in pageable memory in the other case.

To introduce contention to the host-GPU PCIe bus, we
use another CUDA program Bob that repeatedly invokes
the cudaMemcpy() function to transfer an amount of
data to the GPU. We vary the size of the data to inspect
its impacts on the data transfer latency of Alice. This
contender program Bob runs continuously when Alice
measures the time. We also test two cases where the data
to be transferred by Bob resides in page-locked memory
in one case and in regular pages in the other case.

We perform the contention measurement experiments
on an NVIDIA Quadro RTX 6000 GPU. To make the
experiments more interesting, instead of directly running
Alice and Bob in a native environment, we execute them in
two VMs. The GPU is configured into 6 vGPUs, and we
assign one to Alice and another one to Bob. Bob ranges
the size of the transferred data from 4 KB to 512 KB.
The data transfer latencies measured by Alice are shown
in Figure 4. (Table 11 in Appendix B reports the specific
numbers.) There are four scenarios, and in each scenario,
nine latency ranges are illustrated in Figure 4, which are
measured under different sizes of data sent by Bob, and
each range is derived from 1000 measurements.

The “Locked-Locked” and “Regular-Locked” give the
results under the scenarios where Bob transfers data re-
siding in page-locked memory. The “Base” presents the
latencies when there is no contention introduced (i.e., Bob
is not executed), which serve as the baseline. From such
baseline results, we can verify that transferring the same
amount of Alice’s data takes much less time if her data
is in page-locked memory. (For example, in the “Locked-
Locked” scenario, it takes 21,440 – 23,281 clock cycles
for Alice to transfer her 32 KB data, but takes at least
33,406 cycles if her data is in pageable memory.) When
Bob starts repeatedly transferring 4 KB data to create
some contention on the bus, we do not observe much
change if the data transferred by Alice is in page-locked
memory, but we occasionally detect some large delays if
the data is in the regular memory. However, when the size
of data transferred by Bob increases (i.e., the amount of
contention increases), we can observe that the minimum
latencies in the “Locked-Locked” increase monotonically,
but the minimum ones in the “Regular-Locked” change

Base 4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB
Size

215

216

217

218

Cl
oc

k 
Cy

cl
es

Locked-Locked Regular-Locked Locked-Regular Regular-Regular

Figure 4: Data transfer latencies measured by Alice. The
first part of “Locked/Regular – Locked/Regular” indicates
whether Alice’s data resides in page-locked memory or
regular memory, and the second part indicates Bob’s.

negligibly; and, the maximum latencies in the “Locked-
Locked” also increase monotonically, but the maximum
ones in the “Regular-Locked” change irregularly.

Notice that when the size of data transferred by Bob
is above 16 KB, the resultant latency range will have
no intersection with the baseline latency range in the
“Locked-Locked” scenario. However, from the results in
the “Regular-Locked”, we find that even when the size
of the data reaches 512 KB, the latency range is still not
well separated from the baseline one. Moreover, we can
observe that the latency variation in terms of “Locked-
Locked” is always within 2300 clock cycles (i.e., less
than 0.9 µs given a 2.6 GHz processor), but the variation
in terms of “Regular-Locked” can be more than 300,000
cycles (i.e., 115 µs).

As for comparisons, we also present the results when
the data transferred by Bob is in regular pageable mem-
ory. From the results shown in the “Locked-Regular”
and “Regular-Regular”, we can find that the maximum
latencies are similar to the corresponding ones shown in
the “Locked-Locked” and “Regular-Locked” respectively.
This indicates that when the data transferred by Alice
is in page-locked memory, the high data transfer latency
measured by Alice represents the amount of contention on
the PCIe bus. Yet, compared with the latency ranges in
the “Locked-Locked”, we notice that the corresponding
ranges in the “Locked-Regular” have a larger variation.
We summarize the investigation as follows:

Contention on the host-GPU PCIe bus can lead to ob-
servable and consistent increases in the host-to-GPU
data transfer time if the host data resides in page-locked
memory.

4. Cross-VM Covert Channel Attack

In this section, we exploit contention on the host-GPU
PCIe bus to construct a covert communication channel.
This covert channel can be easily used to exfiltrate data



across boundaries established by VMs in many cloud
computing situations.

4.1. Threat Model

We assume that there are two colluding parties, a
sender and a receiver, on the same platform but in different
security domains. The sender has access to some sensitive
data, and it attempts to transmit this piece of data to
the receiver through a covert channel. The platform is
equipped with a modern GPU. The GPU can be accessed
by both the sender and receiver, but its sharing between
security domains is well protected, similar to other hard-
ware resources.

In practice, such a threat model is very realistic in
GPU cloud computing, where the sender and receiver are
in different VMs and have access to a virtualized GPU.
Although this model can be found in several other circum-
stances, we focus on the GPU cloud computing setting
in this paper. In particular, we assume that the sender
and receiver run on an IaaS cloud, which provides the
tenant VMs with access to powerful GPUs enabled by the
state-of-the-art NVIDIA GPU virtualization technique.3
The concrete examples of such clouds include Amazon
EC2 [2], Google Compute Engine [13], and Microsoft
Azure [38].

4.2. Cross-VM Covert Channel over Host-GPU
PCIe Bus

As shown in Section 3.2, contention on the host-GPU
PCIe bus can be reliably detected and measured when
the data involved in the transfers resides in page-locked
memory. Therefore, we can exploit such contention to
determine if the sender and receiver VMs collocate on
the same platform and physically share the same GPU
(namely the co-residency detection [20], [47], [50], [53],
[56], [59]), and then to encode information to achieve
covert communication between the colluding sender and
receiver.

Since the process of measuring contention is also a
process of generating contention to others, a straightfor-
ward co-residency detection protocol will be that both
the sender and receiver continuously measure contention
at the beginning; if the sender experiences constant con-
tention for a predefined period of time, it knows it cur-
rently collocates with the receiver on the same platform
and vice versa. After co-residency is detected, the collud-
ing pair can start communication.

Instead of constructing a robust communication proto-
col similar to that presented in [37], we use a simple pro-
tocol to demonstrate the potential of exploiting contention
on the host-GPU PCIe bus to create cross-VM covert
channels in the GPU clouding computing settings. In this
simple protocol, we use obvious contention to represent
bit 1 and no contention to represent bit 0. The procedure
of the receiver is shown in Figure 5. The receiver uses
the CUDA API to allocate page-locked memory (line 2)
for holding the data that is to be transferred over the

3. Notice that our covert channel also works perfectly with respect to
non-virtualized GPUs. Virtualized GPU makes it much harder and more
interesting as clouds use virtualization.

// N is the number of measurements to take
// T is the threshold for recognizing a bit 1
// BR is the number of bytes transferred to the GPU by the

receiver

1 Use an array n of N bits for the reception of message;
2 Allocate an array aH of BR bytes in page-locked memory of

host;
3 Allocate an array aD of BR bytes in GPU memory;
4 for i← 0 to N − 1 do
5 Use the RDTSCP to mark the start t1;
6 Execute cudaMemcpy() to copy aH to aD ;
7 Use the RDTSCP to mark the end t2;
8 if t2 − t1 < T then
9 n[i]← 0;

10 else
11 n[i]← 1;
12 end
13 end

Figure 5: The procedure of the receiver.

PCIe bus to the allocated GPU memory. As summarized
at the end of Section 3.2, to quantify the bus contention
of interest, we measure the time needed for transferring
the data residing in the page-locked memory to the GPU
(lines 5 – 7). If the data transfer time is shorter than a
threshold T , it is considered as contention-free, and a bit
0 is received; otherwise, a bit 1 is received (lines 8 –
12). The threshold T depends on the size BR of the data
transferred by the receiver, and the optimal size regarding
BR is actually always 32 KB which will be discussed
later.

// M is the number of bits to send
// K is the number of NOPs for sending a bit 0
// BS is the number of bytes transferred to the GPU by the

sender

1 Retrieve a message m of M bits to send;
2 Allocate an array aH of BS bytes in page-locked memory of

host;
3 Allocate an array aD of BS bytes in GPU memory;
4 for i← 0 to M − 1 do
5 if m[i] = 0 then
6 for j ← 0 to K − 1 do
7 Execute a NOP;
8 end
9 else

10 Execute cudaMemcpy() to copy aH to aD ;
11 end
12 end

Figure 6: The procedure of the sender.

The procedure of the sender is shown in Figure 6.
As illustrated in the “Locked-Locked” of Figure 4, stable
contention will be created if the transferred data also
resides in page-locked memory. Therefore, the sender also
allocates a piece of page-locked memory (line 2) and
transfers the data residing in it when contention is needed
for sending a bit 1 (line 10). To send a bit 0, the sender
does nothing but executes a loop of NOPs (lines 6 – 8).
The number K of iterations depends on how long it takes
for the receiver to transfer the data of BR bytes without
contention. Although the sender does not know this time
beforehand, it can try to discover the time by itself, given



the fact that the sender and receiver run on the same
platform and BR is always a fixed value (namely 32 KB).
Different from BR, the optimal size BS of data transferred
by the sender is platform-dependent.

To determine the optimal size of the data transferred
to the GPU by the sender and receiver, we have several
criteria. For the receiver, which measures and uses its data
transfer latency to discover the exfiltrated bits, the size of
the data should make the data transfer latencies sensitive
to contention on the PCIe bus, and it should also be
small enough not to slow down the covert communication
significantly. To this end, we use the ratio of averaged
latency under contention to that under no contention as
an indicator of sensitivity and derive such ratios with
respect to different sizes ranging from 1 KB to 16 MB.
For the purpose of comprehensiveness, we also vary the
size of data transferred by the sender from 32 KB to 16
MB. The experiments are conducted against two NVIDIA
virtualizable GPUs, Quadro RTX 6000 and Tesla V100,
which are later used in our evaluations. The details of the
GPU platforms are described in Table 1.

Note that the experiments are performed on the two
GPUs in both the native setting and virtualized setting.
Interestingly, no matter what data size is on the sender
side and which setting is chosen, the ratio of our interest
is most remarkable at 32 KB. Figure 7 shows the derived
ratios when the sender transfers a piece of 16 MB data.
With respect to other sender data sizes, the ratio patterns
are exactly the same as the ones shown in Figure 7.
Moreover, Figure 10 in Section 5 shows such ratios where
several customer-grade GPUs are used. From that figure,
we can also find that 32 KB is the optimal size meeting
our criteria. Therefore, in the procedure of the receiver, we
will always measure the latency of transferring 32 KB data
in the host’s page-locked memory to the GPU memory.

0

25

50

75

100

4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB

L
at

en
cy

 R
at

io

Data Size

RTX 6000 - native

RTX 6000 - vGPU

V100 - native

V100 - vGPU

Figure 7: Ratio of averaged latency under contention to
averaged latency under no contention, where the data size
of the sender is fixed at 16 MB.

For the sender, we select the size that can make the 32
KB data transfer latency ranges under contention and no
contention well separated. We find that the size boundary
is GPU-specific. For example, in terms of Quadro RTX
6000, the boundary is 16 KB, but in terms of Tesla
V100, it is 32 KB. When the size is above the boundary,
the larger it is, the more separated the ranges will be,
and the more resilient to noise the channel will be, but
unfortunately, the less speed the channel can reach. In
other words, there is a trade-off between the channel
bandwidth and its noise resilience.

4.3. Evaluation

We evaluate this covert channel on a real-world large-
scale cloud computing research platform, Chameleon
Cloud [27]. We use two systems of Chameleon Cloud
that are equipped with virtualizable GPUs and often used
in data centers. The details of the two systems are listed
in Table 1. In terms of hardware specifications, major
cloud platforms like Amazon EC2 have little to no differ-
ence compared to our testbeds provided by Chameleon.
To ensure the practicality of our attack, we evaluated
LockedDown on VMs created under the-state-of-the-art
GPU virtualization techniques. One common challenge
for such attacks in the cloud is to achieve co-residency
between the attacker and victim, but note that this problem
has been widely studied in prior studies [50], [53], [56].
On system A, an NVIDIA Quadro RTX 6000 GPU is used,
and we virtualize it with NVIDIA’s “GRID RTX6000-4Q”
configuration that creates up to 6 vGPUs, each of which
has 4 GB GPU memory. On system B, an NVIDIA Tesla
V100 GPU is used, and we virtualize it with NVIDIA’s
“GRID V100DX-4Q” configuration that creates up to 8
vGPUs, each of which has 4 GB GPU memory. Such
configurations simulate the commonly used GPU cloud
computing platforms.

The sender and receiver run on two VMs, and each
VM is assigned a vGPU. We skip the process of finding
co-residency as they are already on the same platform
physically sharing the same GPU, but a simple simulation
shows that host-to-GPU data transfer latencies can be used
for co-residency detection.

10000

20000

30000

40000

50000

60000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

C
lo

ck
 C

yc
le

s

Measurements

Figure 8: 16 measured data transfer latencies correspond-
ing to bits “0110100101011001” on system A.

As mentioned above, BR is always 32 KB, but BS

changes with the GPU. On system A, we set BS to
128 KB, K to 5250, and T to 40,000. For example,
Figure 8 shows 16 data transfer latencies measured by
the receiver under this setting. From the figure, we can
clearly distinguish bits 1 and 0. On system B, we set BS

to 512 KB, K to 19250, and T to 100,000.
For evaluation, we choose nine paragraphs from a

piece of randomly generated Lorem Ipsum text as the
message sent over the covert channel. The message con-
sists of 5000 bytes, i.e., 40,000 bits. We evaluate how fast
this message can be sent over our contention-based covert
channel, and we also calculate the error rate with respect
to the Levenshtein edit distance4 between the sent message
and the received bits. For the error rate evaluation, we
send the message 6 times, and derive their mean and the
standard deviation. Table 2 shows the results.

4. The Levenshtein edit distance is the minimum number of edits
required to change one string into another string. An edit is either an
insertion, a deletion, or a substitution.



TABLE 1: Platforms of Chameleon Cloud on which the covert channel is evaluated.

System Platform CPU Memory OS GPU # vGPUs
A Dell PowerEdge R740 2 × Xeon Gold 6126 12 × 16 GB DDR4-2666 CentOS 8.3 Quadro RTX 6000 6
B Dell PowerEdge C4140 2 × Xeon Gold 6230 8 × 16 GB DDR4-2933 CentOS 8.3 Tesla V100 8

TABLE 2: Bandwidth and error rate of the covert channel
in a controlled environment.

System Bandwidth Error Rate µ (σ)
A 64 kbps 0.0088 (0.0043)
B 20 kbps 0.0029 (0.0005)

From the results, we can observe that this covert chan-
nel has a competitive bandwidth with a very low error rate.
Note that the errors are not due to other devices competing
for the host-GPU PCIe bus’s bandwidth (because in reality
GPUs are installed on the primary PCIe slots connected to
CPUs via dedicated PCIe lanes). In general, the errors that
appear in this evaluation are caused by synchronization
issues between the sender and receiver. Essentially, the
parameter K in Figure 6 cannot be precisely determined,
so insertions of 0’s can occur if K is chosen too big,
or insertions of 1’s can occur if it is chosen too small.
Nevertheless, such errors can be easily removed by using
advanced encoding methods.

In [39], Naghibijouybari et al. propose several GPU
covert channels, but they consider only a native execution
environment without any virtualization. We have tried to
adapt their covert channels for the more realistic virtual-
ized GPU circumstances. However, we did not succeed in
making any of their covert channels work across vGPUs.
We find that only their L2 cache covert channel can work
with the sender and receiver being in the same VM and
using the same vGPU. The highest bandwidth it can reach
is 30 kbps on system A and 11 kbps on system B, each
of which is only about a half of the corresponding one
of ours. Whether their covert channels can work under
the threat model described in Section 4.1 needs further
investigation, even though our initial strenuous attempts
gave a negative answer5.

The evaluation above is merely performed in a con-
trolled environment where the sender and receiver are the
only two processes intensively running on the platform.
However, in reality, especially in cloud computing, there
may be many other processes running in other VMs in
parallel with the sender and receiver. To create a practi-
cal situation where GPU cloud computing is specifically
needed, we have three other VMs, and inside each VM, a
CNN model is trained using the attached vGPU. The CNN
model is an example in the TensorFlow framework [52],
and its training involves 50,000 images from the CIFAR10
dataset.

In such a practical scenario, we evaluate the covert
channel again using the message consisting of 40,000 bits.
For comparison, we also evaluate the L2 cache covert
channel proposed in [39] within one VM on one vGPU
(as mentioned above, it cannot work across vGPUs). The
results are shown in Table 3.

Compared to the results listed in Table 2, we can
observe that both the bandwidth and error rate are nega-

5. If the newest MIG virtualization (described in Section 2.3) is used,
their covert channels will certainly not work.

TABLE 3: Bandwidth and error rate of the covert channel
in a realistic environment.

System Covert Channel Bandwidth Error Rate µ (σ)

A
Host-GPU PCIe bus 60 kbps 0.0391 (0.004)

L2 cache [39] 2 kbps 0.2853 (0.005)

B
Host-GPU PCIe bus 18 kbps 0.0413 (0.003)

L2 cache [39] 1 kbps 0.2951 (0.015)

tively affected (e.g., in terms of system A, the bandwidth
is reduced by 4 kbps, and the error rate is increased by
about 3%). However, they are still acceptable, especially
considering the large amount of background noise created
by other VMs. By contrast, the L2 cache covert channel
proposed in [39] is significantly degraded (e.g., in terms
of system A, its bandwidth is reduced by 28 kbps, and the
error rate becomes too high so that the covert channel is
no longer very useful).

In addition, we need to mention that the parameters
of our covert channel stay the same as the ones used in
the controlled scenario. However, the parameters of the
L2 cache covert channel of [39] need to be well-tuned;
otherwise, the channel will behave similar to randomly
guessing bits. Therefore, the adaptiveness and resilience
of our covert channel is also much better than the one
proposed in [39].

Next, we further explore the design space of the
covert channel protocol by explicitly adding synchro-
nization. In [39], Naghibijouybari et al. show that their
cache covert channel’s bandwidth can reach as high as
75 kbps by introducing full synchronization. Here, we
choose to synchronize our covert channel communication
using a 16-bit header and a 16-bit ending. Additionally,
Naghibijouybari et al. demonstrate that by tolerating an
error rate of 18 to 26%, their L2 cache covert channel
bandwidth can increase by 25%. It is worth noting that
their high error rate was observed as a result of decreasing
the number of iterations without introducing additional
noise. We tweaked the parameters of the procedure shown
in Figure 6 on system A to increase our bandwidth by
tolerating a higher error rate. To this end, we set BS

to 32 KB, K to 5500, and T to 23,000. As shown by
Scenario 1 in Table 4, we can achieve a higher speed up
to 90 kbps with a slightly increased mean error rate and
standard deviation.

TABLE 4: Bandwidth and error rate of the covert channel
in different scenarios with synchronization.

Scenario Bandwidth Error Rate µ (σ)
1 90 kbps 0.0140 (0.005)
2 81 kbps 0.0038 (0.006)
3 88 kbps 0.1569 (0.076)

We can further optimize our communication protocol
by dividing a message into fixed-size chunks and sending
them individually. Since the synchronization we use needs
32 bits per package, if the chunk size is too small, the
overhead ratio will be too big. We empirically find that the



package size of 1024 bits, including the 32-bit synchro-
nization overhead is optimum. By splitting our message
into 992-bit chunks and adding synchronization, we are
able to reduce our mean error rate to 0.0038 at 81 kbps,
as shown by Scenario 2 in Table 4.

The implementations we discussed so far evaluate the
performance and resilience of our covert channel under
realistic workloads, with three other VMs, using different
vGPUs, and training neural network models. Table 3
shows that our approach has a low error rate and a high
bandwidth under representative noise levels. An extreme
level of noise can have a considerable impact on the
accuracy, which is common for all contention-based side/-
covert channels. To find how resilient our covert channel
is under scenarios where a large amount of traffic occurs
on PCIe, we decide to use a well-known implementa-
tion of the DGEMM GPU micro-benchmark [42] which
measures performance for matrix-matrix multiplication.
In the DGEMM, the CPU loads and stores each data
block to a pinned memory buffer optimized with blocking
and parallelization techniques. In [34], Matsumoto et al.
have shown that this benchmark can consume up to 80%
of the PCIe bandwidth. We anticipate this benchmark to
generate excessive noise, since it is an extreme case for a
High-Performance Computing Challenge Benchmark [33]
to be used in a virtualized environment. As shown by
Scenario 3 in Table 4, we can achieve 88 kbps, and
we calculate the mean and the standard deviation to be
0.1569 and 0.076, respectively. Compared to the L2 cache
covert channel proposed in [39] where no noise is actually
introduced, our covert channel can achieve a significantly
higher bandwidth with a significantly lower error rate even
in such an extreme scenario.

5. Website Fingerprinting Attack

As online presence plays a very prominent role in
today’s society, one way to extract intelligence about an
individual’s behavior is to monitor his/her web browsing
activities. The collection of such information leads to
a massive breach of privacy because direct or indirect
interpretations can be made about someone’s economic,
political and social affiliations. Website fingerprinting at-
tacks have emerged to collect web browsing informa-
tion [16], [22], [43], [48], [49], [54]. In this section, we
demonstrate that the measurable contention caused on the
host-GPU PCIe bus can be exploited to build a website
fingerprinting attack. We show that each website exhibits
a unique pattern of PCIe bus contention that can be used
as its fingerprint.

5.1. Threat Model

We assume that there is an attacker who wants to
stealthily learn information about which websites have
been visited by a victim. The victim uses a personal
computer (e.g., a desktop or a laptop) to browse websites,
and the computer is assumed to have a CUDA-enabled
NVIDIA GPU. Considering the dominant market share
of NVIDIA GPUs (e.g., 82% in the Q4 2020 [1]), this
assumption is regarded as reasonable. We do not impose
strong assumptions on the OS being used by the victim, as
long as it is supported by CUDA (which is true for widely

used OSes like Windows and Linux) and the CUDA
runtime is installed. We do not have strong assumptions
on the web browser either, as long as it uses the GPU
to help render websites (which is true for broadly used
browsers like Chrome and Firefox).

We assume that the attacker has placed a piece of
malware on the victim’s computer. How this malware is
placed on the victim’s computer is out of scope, but as
mentioned by the prior works [16], [22], [29], [64], this
can be achieved through methods like phishing or physical
accessing. This malware does not require any privilege
higher than the normal user, and it does not require the
existence of any software vulnerabilities in the OS or
browser.

We assume the victim will visit only the popular
websites on some list (e.g., Alexa top sites), and the
attacker knows this list. In other words, we focus on a
closed-world scenario, in which the attacker strives to
pinpoint the websites browsed by the victim from a set of
possibilities.

5.2. Website Fingerprinting based on PCIe Bus
Contention

Modern web browsers use GPUs not only for display-
ing but also for helping render web pages. Many objects
during rendering a web page are sent to the GPU [29],
[40]. According to the study conducted in [40], rendering
different web pages gives rise to distinct GPU memory
utilization traces.

We anticipate that when visiting different websites,
the patterns of the induced traffic on the host-GPU PCIe
bus should also be different. If such patterns can be
captured, we should be able to use them to identify which
websites are being browsed (i.e., website fingerprinting).
Because a different amount of traffic creates a different
amount of bus congestion, to capture the traffic patterns
of interest, we can leverage the contention measurement
approach of the receiver discussed in Section 4, where
the cudaMemcpy() function is repeatedly used to copy
a piece of data to the GPU, and the data transfer latency
is measured. To this end, we adapt the approach of the
receiver to have the procedure shown in Figure 9.

// S is the number of samples to take
// R is the number of repeats to adjust time granularity
// BW is the number of bytes transferred to the GPU

1 Use an array s of length S for storing samples;
2 Allocate an array aH of BW bytes in page-locked memory

of host;
3 Allocate an array aD of BW bytes in GPU memory;
4 for i← 0 to S − 1 do
5 Use the RDTSCP to mark the start t1;
6 for j ← 0 to R− 1 do
7 Execute cudaMemcpy() to copy aH to aD ;
8 end
9 Use the RDTSCP to mark the end t2;

10 s[i]← t2 − t1;
11 end

Figure 9: The procedure of capturing the pattern of
PCIe bus traffic induced by rendering a web page.



As described in Section 3, to reliably utilize the host-
to-GPU data transfer time to measure contention on the
PCIe bus, the data to be transferred needs to reside in
page-locked memory. Therefore, we still exploit the page-
locked memory allocation in CUDA (line 2). Again, we
select how much data should be transferred each time
with respect to the sensitivity to contention in the form of
latency ratios. Similar to Figure 7, Figure 10 shows the
ratios when three popular GPUs that are commonly used
in personal computers are tested. (The three GPUs are
NVIDIA GeForce GTX 1080, RTX 2060, and RTX 2080.)
From the figure, we can clearly find that BW should also
be 32 KB.

0

25

50

75

100

125

150

4 KB 8 KB 16 KB 32 KB 64 KB 128 KB 256 KB 512 KB 1 MB 2 MB 4 MB 8 MB 16 MB

L
at

en
cy

 R
at

io

Data Size

GTX 1080

RTX 2060

RTX 2080

Figure 10: Ratio of averaged latency under contention to
averaged latency under no contention.

Since transferring 32 KB data over the PCIe bus to the
GPU usually takes several microseconds, measuring and
recording the execution time of each cudaMemcpy()
invocation will result in an unnecessarily long sequence,
given the fact that rendering a web page may need several
seconds. Accordingly, we measure R invocations together
as one sample in Figure 9 (lines 6 – 8). The selection of
R is a trade-off between the time granularity of a sample
and the total number of samples. We empirically choose
an R that makes each sample take about 1.5 ms under no
contention.

To verify our anticipation and also that the captured
traffic patterns can be used to fingerprint websites, the
approach is tested against four commonly visited websites
using Chrome on a computer equipped with an NVIDIA
RTX 2080. Figure 11 shows the traces taken for several
websites using the procedure in Figure 9. The numbers
on the X-axis correspond to the samples, and each sample
corresponds to one iteration in Figure 9. The Y-axis shows
the time taken for one cudaMemcpy() in clock cycles
(using RDTSCP). From the figure, we can see that each
website gives rise to a distinctive pattern, which can be
interpreted as its fingerprint.

More importantly, we find that the patterns corre-
sponding to multiple visits of a given website do not
have significant variations, which means that the bus
contention measurement is very stable. As illustrated in
Section 3.2, such a stable measurement happens in the
“Locked-Locked” scenario. Therefore, we speculate that
a web browser has a DMA buffer dedicated to the commu-
nication between the GPU and the browser for hardware-
accelerated web page rendering.

5.3. Evaluation

We evaluate the PCIe bus contention-based website
fingerprinting against different settings of GPU, OS, and

0 1000 2000 3000 4000 5000
Measurements

0.3

0.6

0.9

1.2

1.5

C
lo

ck
 C

y
cl

e
s

1e7

(a) Amazon.com

0 1000 2000 3000 4000 5000
Measurements

0.3

0.6

0.9

1.2

1.5

C
lo

ck
 C

y
cl

e
s

1e7

(b) Google.com

0 1000 2000 3000 4000 5000
Measurements

0.3

0.6

0.9

1.2

1.5

C
lo

ck
 C

y
cl

e
s

1e7

(c) Facebook.com

0 1000 2000 3000 4000 5000
Measurements

0.3

0.6

0.9

1.2

1.5
C

lo
ck

 C
y
cl

e
s

1e7

(d) Nytimes.com

Figure 11: Data transfer latency traces for visiting four
websites.

browser. The GPUs on which the evaluation is performed
include NVIDIA GeForce GTX 1080, RTX 2060, and
RTX 2080. These are very popular desktop GPUs cur-
rently being used in practice. The evaluated OSes are Win-
dows 10 and Ubuntu 20.04, which are both very widely
used on desktops. On both Windows and Ubuntu Linux
systems, we install Chrome and Firefox and use them for
the evaluation. (Both Chrome and Firefox leverage the
GPU to help render web pages by default.) In addition
to the evaluation in the normal network scenario against
commonly used browsers, we further evaluate this PCIe
bus contention-based website fingerprinting attack under
the anonymity network scenario. Specifically, we focus on
Tor (The Onion Router) that encrypts network traffic and
relays it between users and website servers anonymously.
The evaluation settings are listed in Table 5.

Based on the Alexa Top websites globally, we have
created a list of 100 websites. These 100 websites are
listed in the appendix. As stated above, we evaluate the
website fingerprinting in a closed-world scenario, where
we classify a given trace into one of the 100 websites.
Since the captured traces are essentially time series data,
we simply use a Fully Convolutional Network (FCN)
model in Keras that is used for time series classifica-
tion [10]. Figure 12 illustrates the architecture of the
model. The hyperparameters and parameters of this model
can be found in [10], [21].

Under each setting, we train an FCN model where
the training dataset consists of 100 captured data transfer
latency traces for each website, namely, 10,000 traces in
total. We also collect another 150 traces per website for



TABLE 5: Website fingerprinting evaluation settings.

Setting OS Web Browser GPU
W-C-1080 Windows 10 Chrome GTX 1080
W-C-2060 Windows 10 Chrome RTX 2060
W-C-2080 Windows 10 Chrome RTX 2080
W-F-1080 Windows 10 Firefox GTX 1080
W-F-2060 Windows 10 Firefox RTX 2060
W-F-2080 Windows 10 Firefox RTX 2080
W-T-1080 Windows 10 Tor GTX 1080
W-T-2060 Windows 10 Tor RTX 2060
W-T-2080 Windows 10 Tor RTX 2080
U-C-1080 Ubuntu 20.04 Chrome GTX 1080
U-C-2060 Ubuntu 20.04 Chrome RTX 2060
U-C-2080 Ubuntu 20.04 Chrome RTX 2080
U-F-1080 Ubuntu 20.04 Firefox GTX 1080
U-F-2060 Ubuntu 20.04 Firefox RTX 2060
U-F-2080 Ubuntu 20.04 Firefox RTX 2080

the purpose of testing, namely, 15,000 traces in the test
dataset. Each captured trace contains 5000 samples, which
lasts between 7 to 9 seconds depending on how much PCIe
bus traffic is created during rendering the corresponding
web page. The trace collections are mainly conducted in
two locations. One location is the campus of a university,
and the other one is an apartment. The traces in different
settings are collected in different weeks.

64 64 64

Layer 1 Layer 2 Layer 3
Input Global Polling

Convolution

Ti
m

e 
Se

rie
s

BN
 +

 R
eL

U

BN
 +

 R
eL

U

BN
 +

 R
eL

U

So
ftm

ax

Figure 12: The architecture of the FCN model.

5.3.1. Normal Network Scenario. We first evaluate the
attack against Chrome and Firefox under normal network
circumstances. The website fingerprinting accuracy results
are presented in Table 6. The main diagonal entries in
the table give the results when the setting under which
the testing traces are collected matches the setting under
which the training examples are collected. From the re-
sults, we can see that the website fingerprinting accuracy
is very high no matter which setting is chosen. For ex-
ample, the accuracy can reach 95.2% in the W-C-2080
setting, and even the lowest accuracy that happens under
the U-F-2080 setting can still be 84.4%.

We examine what websites are often misclassified. We
find that there are mainly three types of characteristics
shared by these websites: (1) They often have similar
layouts and outlooks, e.g., Dailymail and Foxnews. (2)
They often have a typical navigation bar with wide empty
margins on the body, e.g., Tripadvisor and Expedia. (3)
They often have many dynamic contents with occasionally
autoplayed video pop-ups on the side, e.g., ESPN and
Rottentomatoes. Note that some websites may share all
these characteristics, but they are still well distinguished.
Therefore, these characteristics do not form a sufficient
condition for misidentification.

Moreover, the entries that are not on the main diagonal
show the respective model tested against traces collected

under a different setting. While most of the results show
that cross-setting prediction is similar to random guessing,
some entries that are highlighted in the table interestingly
show the opposite. For example, the model trained under
the U-F-2080 setting can classify the traces captured in
the U-F-2060 setting with a 52.6% accuracy, and likewise,
the model trained under the U-F-2060 setting can classify
the traces captured in the U-F-2080 setting with a 50.6%
accuracy. (Collecting the two testing datasets is separated
by weeks.) Initially, we thought this is due to that both
RTX 2060 and 2080 belong to the same architecture.
However, the other pairs (e.g., W-C-2060 and W-C-2080)
do not show similar results. We conclude that exploiting
contention on the host-GPU PCIe bus to fingerprint web-
sites is browser and platform-sensitive in general.

Table 7 additionally shows the average along with the
minimum precision and recall values for website finger-
printing under each setting. With respect to a website, we
have

precision =
TP

TP + FP
and recall =

TP
TP + FN

where TP refers to true positives (i.e., a trace of a website
is correctly classified as that website), FP refers to false
positives (i.e., a trace that does not belong to a website
is incorrectly classified as that website), and FN refers to
false negatives (i.e., a trace of a website is incorrectly
classified as not belonging to that website). Precision
shows how much we can trust that the identified visits
to a website are indeed made by a user, and recall indi-
cates how much portion of the visits to a website made
by a user can be correctly identified using this website
fingerprinting approach. From the results, we can observe
that the precision and recall values are sufficiently high
even in the worst cases, which means that this website
fingerprinting approach is reliable and accurate.

5.3.2. Anonymity Network Scenario. We also evaluate
the attack against Tor in the anonymity network circum-
stances. However, when using Tor browser, we find that
some of the 100 popular websites which we use for eval-
uation (listed in the appendix) cannot be reached through
the Tor network (i.e., access denied, 403 forbidden, etc.).
Consequently, we have to remove these websites from our
list in this evaluation against Tor, and in the end there are
64 websites left.

Compared with Chrome and Firefox, Tor introduces
many difficulties. First, due to the unpredictable latency
incurred by Tor routers and its overlay network, the cap-
tured traces may be distorted in time. Second, due to the
encryption and decryption operations used in each packet,
the traces are noisier. Third, due to the changeable exit
node, websites adapting to geolocations may use different
languages or provide different contents, which can affect
the consistency of the captured traces.

Nevertheless, even in the presence of the intricacies
introduced by Tor, our website fingerprinting attack still
performs well. The website fingerprinting accuracy results
for Tor browser on Windows are presented Table 8. From
the results, we can see that up to 90.6% accuracy can be
achieved in the W-T-2060 setting. Compared to the result
in the W-T-2060 setting, the accuracy in the W-T-1080
or the W-T-2080 setting is only slightly lower (which is



TABLE 6: Accuracy for testing the models against traces from the same and different platforms.

Testing cases

W-C-1080 W-C-2060 W-C-2080 W-F-1080 W-F-2060 W-F-2080 U-C-1080 U-C-2060 U-C-2080 U-F-1080 U-F-2060 U-F-2080
W-C-1080 91.8% 36.2% 27.6% 4.7% 4.1% 3.5% 1.5% 2.8% 2.0% 0.6% 1.0% 1.1%
W-C-2060 18.6% 91.5% 4.1% 4.1% 4.5% 5.4% 1.2% 4.3% 2.0% 1.1% 1.0% 1.2%
W-C-2080 3.4% 7.0% 95.2% 2.4% 4.2% 3.7% 1.8% 1.7% 1.8% 0.8% 1.6% 1.0%
W-F-1080 3.4% 3.1% 1.5% 90.7% 7.1% 6.7% 1.2% 2.2% 1.2% 1.4% 1.1% 1.2%
W-F-2060 3.5% 4.1% 0.9% 8.6% 93.7% 41.5% 2.0% 1.8% 2.7% 1.4% 0.7% 1.2%
W-F-2080 3.1% 6.6% 2.0% 12.0% 30.5% 93.3% 2.5% 2.4% 2.8% 1.5% 1.0% 1.2%
U-C-1080 2.1% 3.2% 1.7% 3.8% 2.9% 3.4% 91.0% 16.9% 33.7% 1.2% 0.8% 1.4%
U-C-2060 3.0% 3.6% 2.0% 2.0% 2.5% 2.2% 14.4% 89.0% 11.3% 0.9% 1.1% 1.1%
U-C-2080 2.1% 1.7% 2.2% 2.6% 1.6% 1.8% 28.7% 7.1% 93.8% 1.6% 1.1% 1.5%
U-F-1080 0.7% 0.9% 0.7% 1.5% 0.8% 0.8% 1.3% 0.4% 2.5% 85.4% 0.4% 0.5%
U-F-2060 2.5% 1.6% 0.9% 1.6% 0.6% 0.2% 2.6% 3.1% 2.8% 11.4% 88.5% 50.6%

C
la

ss
ifi

er

U-F-2080 0.2% 1.1% 0.8% 1.6% 0.2% 0.2% 1.8% 2.0% 1.7% 8.2% 52.6% 84.4%

TABLE 7: The average and minimum precision and re-
call for evaluation against Google Chrome and Firefox
browsers on Windows and Ubuntu Linux.

Precision Recall
GPU Mean Min. Mean Min.

W-C-1080 92.8% 47.2% 91.8% 44.0%
W-C-2060 92.5% 52.8% 91.5% 44.0%
W-C-2080 95.5% 73.4% 95.2% 60.0%
W-F-1080 92.0% 56.7% 90.7% 56.0%
W-F-2060 94.0% 78.0% 93.7% 54.7%
W-F-2080 93.6% 66.9% 93.3% 60.0%
U-C-1080 91.9% 59.0% 91.0% 43.3%
U-C-2060 90.1% 46.4% 89.0% 60.7%
U-C-2080 94.2% 73.6% 93.8% 72.7%
U-F-1080 86.0% 45.9% 85.4% 42.7%
U-F-2060 89.1% 55.5% 88.5% 38.7%
U-F-2080 84.9% 50.0% 84.4% 46.0%

89.9%). The cross-setting prediction results also show that
some of the different classifier and testing pairs (W-T-1080
and W-T-2060; W-T-2060 and W-T-2080) can achieve an
accuracy higher than 21%.

TABLE 8: Accuracy for testing the models against traces
from the same and different platforms on Tor.

Testing cases

W-T-1080 W-T-2060 W-T-2080
W-T-1080 89.9% 21.2% 9.3%
W-T-2060 12.8% 90.6% 21.5%

Clas
sifi

er

W-T-2080 7.8% 19.4% 89.9%

In addition, Table 9 shows the average and minimum
precision and recall values for the evaluation against Tor.
Compared to the corresponding values shown in Table 7
for the evaluations against Chrome and Firefox, we do not
observe significant differences. This means that this web-
site fingerprinting approach is still reliable and accurate
even if Tor browser is used.

TABLE 9: The average and minimum precision and recall
for evaluation against Tor browser on Windows.

Precision Recall
GPU Mean Min. Mean Min.

W-T-1080 90.2% 58.5% 89.9% 52.7%
W-T-2060 90.9% 57.0% 90.6% 54.0%
W-T-2080 90.9% 45.1% 89.9% 56.0%

6. Countermeasures

The most naive approach to thwarting our attacks is
to remove the page-locked memory allocation and transfer
feature from CUDA (e.g., the cudaMallocHost() and
cudaHostAlloc() functions). This would significantly
hinder our control over using data transfer latencies to
measure contention on the bus. After this change, any
attempt to rebuild the attacks presented in this paper
would have to resort to using regular pageable data
transfers. However, data transfers from regular pageable
memory can introduce a considerable amount of over-
head and display irregularities in latency as shown in
Section 3.2. Therefore, this countermeasure collaterally
introduces many downsides for many parallel computing
programs that require large amounts of asynchronous data
transfers. For highly parallel applications optimizing data
transfers on CUDA is already a challenge on its own.
Currently, NVIDIA’s own CUDA programming documen-
tation recommends three optimization methods: minimiz-
ing the data transfers, batching small transfers, or using
page-locked host memory. Page-locked data transfers are
essential when a programmer needs to transfer a small
amount of data for an asynchronous process, since page-
locked memory can be handled asynchronously without
introducing a colossal data transfer overhead, and thus
keeping the SMs from stalling.

To specifically mitigate our covert channel from being
a danger for cloud users using vGPUs, NVIDIA can im-
plement a time-division multiple access (TDMA) method
that divides hardware resource usage into time-sharing
slices. If the PCIe is shared via TDMA across multiple
vGPUs, then the intermission between succeeding data
transfers would not depend on the size of data transfers.
Therefore, it would eliminate our methodology from being
a threat across vGPUs. In such a scenario, the delays from
a VM’s perspective would not be meaningful to build
such a covert channel. However, this method would not
be the most optimal approach in terms of optimizing the
efficiency of the data transfer pipeline. This could hinder
data transfers across all VMs that utilize a vGPU instance
of the same physical GPU and this scheduling would
introduce additional overhead. Similarly, TDMA can also
be applied in a way that can eliminate our side-channels
use in the website fingerprinting attack. For instance, each
process can be assigned to a security domain, which would
then be assigned to distinct channels. Therefore, each
security domain would have its fair share of the PCIe in
complete isolation. Nonetheless, this approach could also
cause system-wide stagnation from the perspective of the



data transfer pipeline.
Additionally, a mechanism that detects our attacks

can be employed as a countermeasure. Our side-channel
relies on repeated transfer of data to detect contention.
These transfers themselves cause a noticeable contention
that might be detected by a third-party that occasionally
measures the transfer bandwidth. Moreover, our attacks
increase the power draw of the GPU noticeably by con-
stantly utilizing DMA engines. This is particularly notice-
able in a consumer PC since the cooling system audibly
ramps up during our fingerprinting process. As a result,
anomaly detection mechanisms that rely on monitoring
GPU performance metrics may be employed to uncover
our attacks and warn the user.

7. Related Work

There has been plenty of interest in security vul-
nerabilities caused by shared hardware resources. Wu et
al. [56] brought attention to the possibility of implement-
ing high-speed covert channel attacks in the cloud and
showed that virtualized environments still offer covert
channel mediums. Lately, researchers have also started to
study GPU vulnerabilities.

Frigo et al. [11] studied GPU-based microarchitectural
attacks on integrated GPUs of ARM platforms. In contrast,
we target discrete GPUs and cloud systems. Naghibijouy-
bari et al., [39] presented the first covert channel attacks
on GPGPUs and exploited the scheduling algorithms to
force colocation. They showed cache-based covert chan-
nels between two colluding kernels running on the same
GPU on the cloud. We failed to fully replicate their work
across separate vGPUs and evaluate its practicality under
our threat model.

Analogous to our work, Tan et al. exploited PCIe
congestion to mount side-channel attacks that use RDMA
NIC to attack GPU and NVMe SSD to attack Ether-
net NIC [51]. Our approaches to contention generation
differ since their attacks utilize NICs to introduce PCIe
congestion, while our attack uses GPUs. Website finger-
printing attack is a scenario discussed in both of our
works. However, we have evaluated our work on more
GPUs under two operating systems and with various web
browsers, whereas the work in [51] only considers a single
GPU using Chrome under Linux. For webpage inference
based on PCIe contention, we use host-GPU contention in
contrast to their NIC-GPU contention. They have inves-
tigated stealing neural networks and keystrokes while we
introduce the first virtualized GPU-based cross-VM covert
channel. Our work differs by providing a covert com-
munication channel for data exfiltration across isolation
boundaries established by state-of-the-art virtualization
techniques. In addition to these conjectural differences
our attacks also differ in practicality. Although Tan et al.
proposes the RDMA scenario as not needing execution
capabilities, in cloud computing setups, GPUs are nearly
always installed on the PCIe slot that is connected to the
CPU via dedicated lanes, as illustrated in Figure 1. As
described in Section 2.2, the first few PCIe slots on a
motherboard are for dedicated lanes, which are sometimes
called primary PCIe, and the rest of the slots are connected
to a PCIe switch in the PCH. In such standard scenarios,
no other PCIe devices (e.g., NVMe or RDMA NIC) will

compete with the GPU for PCIe bandwidth, regardless of
whether they are directly via dedicated lanes or indirectly
via PCH. We have evaluated our work in a more realistic
setup (i.e., Chameleon Cloud [27]) where the GPU uses
the dedicated lanes to the CPU and the system’s hardware
is not intentionally arranged.

7.1. GPU Covert-/Side-Channel Attacks

Over the recent years, computer systems have been in-
creasingly facing challenges introduced by covert channel
attacks [37], [56], [59], [61], [63], [64]. However, to the
best of our knowledge, fully virtualized GPUs have not
been previously targeted by covert channel attacks.

Naghibijouybari et al. reverse engineered hardware
scheduling algorithms and showed that GPUs are vulner-
able to covert channel attacks between two concurrently
running kernels [39]. They introduced several types of
covert channels, but their evaluations were conducted in
a controlled manner on one bare-metal GPU running
two concurrent kernels. To the best of our exhaustive
attempts, we cannot achieve their covert channels across
two vGPUs, as described in Section 4.3. Moreover, in [7],
Davidov and Oldenburg exploited the EM emanations of
a malware-infected AMD GPU to construct a physical
covert channel.

Numerous works have shown the threat of timing side-
channel attacks on CPUs [4], [14], [15], [44]. With the
advancements of GPUs as crucial components of contem-
porary computing devices, researchers show great interest
in finding the GPU side-channel vulnerabilities. The works
in [6] and [58] took cache-timing attacks to the GPU
environments.

Jiang et al. conducted a timing attack on a CUDA
AES implementation where the encryption time is utilized
to recover the private key [24]. Later, they have also
conducted another work where they showed that bank
conflicts in a GPU’s shared memory could be used to
create a timing channel [25]. Frigo et al. investigated
the security implications of integrated GPUs on mobile
devices, and they showed that the WebGL timing APIs
could be leveraged to build side-channel and Rowhammer
attacks using JavaScript [11].

7.2. Website Fingerprinting Attacks

One group of website fingerprinting attacks relies on
network traffic analysis. Packets on a network cause dis-
tinct traffic patterns due to timing variations and varying
sizes. Researchers have shown that these attacks can be
implemented on many web browsers, operating systems,
or encryption scenarios [3], [17], [18], [23], [26], [30],
[32], [45]. Recently, methods such as traffic splitting [8]
and obfuscation with dummy packets [12] were introduced
for mitigating these types of website fingerprinting attacks.

Another group of website fingerprinting attacks lever-
ages side-channel information. As described in [64], the
side-channel information can be either physical or logical.
The physical website fingerprinting attacks exploit some
observable physical side effects correlated with rendering
different web page [5], [31], [35], [46], [60], [62]. In terms
of logical fingerprinting attacks, it has been shown that
cache-based side-channel information [43], [48], hardware



performance counters [16], memory footprints [22], GPU
memory dumps [29], GPU utilization patterns [40], and
mobile phone statistics [28], [49] can be exploited for this
purpose. Similarly, our PCIe bus contention-based website
fingerprinting attack also relies on a logical side-channel.

8. Conclusion

In this paper, we disclose a novel side-channel vul-
nerability on systems equipped with GPUs. Side-channels
caused by contention on the PCIe bus are overlooked
by manufacturers. Motivated by the observation that het-
erogeneous parallel computing models on GPUs require
immense amounts of data to transfer, we constructed two
realistic attacks exploiting the contention on the host-GPU
PCIe bus. In the first attack, we have built a covert com-
munication channel that can exfiltrate information across
virtual GPUs assigned to different VMs. This high-speed
covert channel attack raises questions about the security
of cloud computing systems equipped with GPUs. In the
second attack, we have implemented a website fingerprint-
ing attack using the unique pattern of PCIe bus contention
to infer the websites visited by a victim. We evaluated this
website fingerprinting attack against popular browsers like
Chrome and Firefox on both Windows and Linux as well
as against Tor, and showed that it is reliable and accurate.
In addition, we have conferred various countermeasures
to thwart these attacks.

Availability

The artifacts needed to reproduce this work are avail-
able at https://github.com/mertside/lockeddown.

Acknowledgment

This work is supported in part by the National Science
Foundation (CNS-2147217, CNS-1739328, and SaTC-
2019536). The authors would like to thank the anonymous
reviewers for their comments and suggestions that help us
improve the quality of the paper. The authors would also
like to thank Chameleon for providing experimental cloud
platforms for our research.

References

[1] T. Alsop, “PC discrete GPU market share
worldwide by vendor 2020,” Mar 2021. [On-
line]. Available: https://www.statista.com/statistics/1131242/
pc-discrete-gpu-shipment-share-by-vendor-worldwide/

[2] Amazon, “Install NVIDIA drivers on Linux instances,”
https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/
install-nvidia-driver.html#nvidia-GRID-driver, 2021.

[3] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson, “Touching from a
distance: Website fingerprinting attacks and defenses,” in Proceed-
ings of the 2012 ACM Conference on Computer and Communica-
tions Security, 2012, pp. 605–616.

[4] M. H. I. Chowdhuryy and F. Yao, “Leaking Secrets through Mod-
ern Branch Predictor in the Speculative World,” IEEE Transactions
on Computers, 2021.

[5] S. S. Clark, H. Mustafa, B. Ransford, J. Sorber, K. Fu, and W. Xu,
“Current Events: Identifying Webpages by Tapping the Electrical
Outlet,” in European Symposium on Research in Computer Secu-
rity. Springer, 2013, pp. 700–717.

[6] B. Cope, P. Y. Cheung, W. Luk, and L. Howes, “Performance
Comparison of Graphics Processors to Reconfigurable Logic: A
Case Study,” IEEE Transactions on Computers, vol. 59, no. 4, pp.
433–448, 2010.

[7] Davidov, Mikhail and Oldenburg, Baron, “TEMPEST@Home -
Finding Radio Frequency Side Channels,” https://duo.com/labs/
research/finding-radio-sidechannels#section9, 2020.

[8] W. De la Cadena, A. Mitseva, J. Hiller, J. Pennekamp, S. Reuter,
J. Filter, T. Engel, K. Wehrle, and A. Panchenko, “TrafficSliver:
Fighting Website Fingerprinting Attacks with Traffic Splitting,” in
Proceedings of the 2020 ACM SIGSAC Conference on Computer
and Communications Security, 2020, pp. 1971–1985.

[9] M. Dowty and J. Sugerman, “GPU Virtualization on VMware’s
Hosted I/O Architecture,” ACM SIGOPS Operating Systems
Review, vol. 43, no. 3, p. 73–82, Jul. 2009. [Online]. Available:
https://doi.org/10.1145/1618525.1618534

[10] H. I. FAWAZ, “Keras documentation: Timeseries classification
from scratch,” 2020. [Online]. Available: https://keras.io/examples/
timeseries/timeseries classification from scratch

[11] P. Frigo, C. Giuffrida, H. Bos, and K. Razavi, “Grand Pwning
Unit: Accelerating Microarchitectural Attacks with the GPU,” in
2018 IEEE Symposium on Security and Privacy (SP), 2018, pp.
195–210.

[12] J. Gong and T. Wang, “Zero-delay lightweight defenses against
website fingerprinting,” in 29th USENIX Security Symposium
(USENIX Security 20), 2020, pp. 717–734.

[13] Google, “Installing GRID drivers for virtual workstations,” https:
//cloud.google.com/compute/docs/gpus/install-grid-drivers, 2021.

[14] B. Gras, K. Razavi, H. Bos, and C. Giuffrida, “Translation Leak-
aside Buffer: Defeating Cache Side-channel Protections with TLB
Attacks,” in 27th USENIX Security Symposium (USENIX Security
18), 2018, pp. 955–972.

[15] D. Gullasch, E. Bangerter, and S. Krenn, “Cache Games–Bringing
Access-Based Cache Attacks on AES to Practice,” in 2011 IEEE
Symposium on Security and Privacy, 2011, pp. 490–505.

[16] B. Gulmezoglu, A. Zankl, T. Eisenbarth, and B. Sunar, “Per-
fWeb: How to Violate Web Privacy with Hardware Performance
Events,” in European Symposium on Research in Computer Secu-
rity. Springer, 2017, pp. 80–97.

[17] J. Hayes and G. Danezis, “k-fingerprinting: A robust scalable web-
site fingerprinting technique,” in 25th USENIX Security Symposium
(USENIX Security 16), 2016, pp. 1187–1203.

[18] A. Hintz, “Fingerprinting websites using traffic analysis,” in Inter-
national Workshop on Privacy Enhancing Technologies. Springer,
2002, pp. 171–178.

[19] X. Hu, L. Liang, S. Li, L. Deng, P. Zuo, Y. Ji, X. Xie, Y. Ding,
C. Liu, T. Sherwood et al., “Deepsniffer: A DNN Model Extraction
Framework Based on Learning Architectural Hints,” in Proceedings
of the Twenty-Fifth International Conference on Architectural Sup-
port for Programming Languages and Operating Systems, 2020,
pp. 385–399.

[20] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and
B. Sunar, “Cache Attacks Enable Bulk Key Recovery on the
Cloud,” in International Conference on Cryptographic Hardware
and Embedded Systems. Springer, 2016, pp. 368–388.

[21] H. Ismail Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A.
Muller, “Deep learning for time series classification: a review,”
Data Mining and Knowledge Discovery, vol. 33, no. 4, pp. 917–
963, 2019.

[22] S. Jana and V. Shmatikov, “Memento: Learning Secrets from
Process Footprints,” in 2012 IEEE Symposium on Security and
Privacy. IEEE, 2012, pp. 143–157.

[23] R. Jansen, M. Juarez, R. Galvez, T. Elahi, and C. Diaz, “Inside
Job: Applying Traffic Analysis to Measure Tor from Within.” in
NDSS, 2018.

[24] Z. H. Jiang, Y. Fei, and D. Kaeli, “A complete key recovery timing
attack on a GPU,” in 2016 IEEE International Symposium on High
Performance Computer Architecture (HPCA). IEEE, 2016, pp.
394–405.



[25] ——, “A novel side-channel timing attack on GPUs,” in Proceed-
ings of the on Great Lakes Symposium on VLSI 2017, 2017, pp.
167–172.

[26] M. Juarez, S. Afroz, G. Acar, C. Diaz, and R. Greenstadt, “A
critical evaluation of website fingerprinting attacks,” in Proceedings
of the 2014 ACM SIGSAC Conference on Computer and Commu-
nications Security, 2014, pp. 263–274.

[27] K. Keahey, J. Anderson, Z. Zhen, P. Riteau, P. Ruth, D. Stanzione,
M. Cevik, J. Colleran, H. S. Gunawi, C. Hammock, J. Mambretti,
A. Barnes, F. Halbach, A. Rocha, and J. Stubbs, “Lessons Learned
from the Chameleon Testbed,” in Proceedings of the 2020 USENIX
Annual Technical Conference (USENIX ATC ’20). USENIX
Association, July 2020.

[28] H. Kim, S. Lee, and J. Kim, “Inferring Browser Activity and Status
Through Remote Monitoring of Storage Usage,” in Proceedings of
the 32nd Annual Conference on Computer Security Applications,
2016, pp. 410–421.

[29] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing webpages rendered
on your browser by exploiting GPU vulnerabilities,” in 2014 IEEE
Symposium on Security and Privacy. IEEE, 2014, pp. 19–33.

[30] S. Li, H. Guo, and N. Hopper, “Measuring information leakage in
website fingerprinting attacks and defenses,” in Proceedings of the
2018 ACM SIGSAC Conference on Computer and Communications
Security, 2018, pp. 1977–1992.

[31] P. Lifshits, R. Forte, Y. Hoshen, M. Halpern, M. Philipose, M. Ti-
wari, and M. Silberstein, “Power to peep-all: Inference Attacks by
Malicious Batteries on Mobile Devices,” Proceedings on Privacy
Enhancing Technologies, vol. 2018, no. 4, pp. 141–158, 2018.

[32] L. Lu, E.-C. Chang, and M. C. Chan, “Website fingerprinting
and identification using ordered feature sequences,” in European
Symposium on Research in Computer Security. Springer, 2010,
pp. 199–214.

[33] P. R. Luszczek, D. H. Bailey, J. J. Dongarra, J. Kepner, R. F.
Lucas, R. Rabenseifner, and D. Takahashi, “The HPC Challenge
(HPCC) Benchmark Suite,” in Proceedings of the 2006 ACM/IEEE
Conference on Supercomputing, vol. 213, no. 10.1145, 2006, pp.
1 188 455–1 188 677.

[34] K. Matsumoto, N. Nakasato, T. Sakai, H. Yahagi, and S. G.
Sedukhin, “Multi-level Optimization of Matrix Multiplication for
GPU-equipped Systems,” Procedia Computer Science, vol. 4, pp.
342–351, 2011.

[35] N. Matyunin, Y. Wang, T. Arul, K. Kullmann, J. Szefer, and
S. Katzenbeisser, “MagneticSpy: Exploiting Magnetometer in Mo-
bile Devices for Website and Application Fingerprinting,” in Pro-
ceedings of the 18th ACM Workshop on Privacy in the Electronic
Society, 2019, pp. 135–149.

[36] C. Maurice, C. Neumann, O. Heen, and A. Francillon, “Confiden-
tiality Issues on a GPU in a Virtualized Environment,” in Financial
Cryptography and Data Security, N. Christin and R. Safavi-Naini,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014, pp.
119–135.

[37] C. Maurice, M. Weber, M. Schwarz, L. Giner, D. Gruss, C. A.
Boano, S. Mangard, and K. Römer, “Hello from the Other Side:
SSH over Robust Cache Covert Channels in the Cloud,” in NDSS,
vol. 17, 2017, pp. 8–11.

[38] Microsoft, “Install NVIDIA GPU drivers on N-series VMs running
Linux,” https://docs.microsoft.com/en-us/azure/virtual-machines/
linux/n-series-driver-setup, 2019.

[39] H. Naghibijouybari, K. N. Khasawneh, and N. Abu-Ghazaleh,
“Constructing and Characterizing Covert Channels on GPUs,” in
Proceedings of the 50th Annual IEEE/ACM International Sympo-
sium on Microarchitecture, ser. MICRO-50 ’17, 2017, p. 354–366.

[40] H. Naghibijouybari, A. Neupane, Z. Qian, and N. Abu-Ghazaleh,
“Rendered insecure: GPU side channel attacks are practical,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, 2018, pp. 2139–2153.

[41] NVIDIA, “Virtual GPU Technology,” https://www.nvidia.com/
en-us/data-center/virtual-gpu-technology/, 2021.

[42] NVIDIA Corporation, “CUDA Samples,” 2022. [Online].
Available: https://docs.nvidia.com/cuda/cuda-samples/index.html#
matrix-multiplication--cublas-

[43] Y. Oren, V. P. Kemerlis, S. Sethumadhavan, and A. D. Keromytis,
“The Spy in the Sandbox: Practical Cache Attacks in JavaScript
and their Implications,” in Proceedings of the 22nd ACM SIGSAC
Conference on Computer and Communications Security, 2015, pp.
1406–1418.

[44] D. A. Osvik, A. Shamir, and E. Tromer, “Cache attacks and
countermeasures: the case of AES,” in Cryptographers’ Track at
the RSA Conference. Springer, 2006, pp. 1–20.

[45] A. Panchenko, F. Lanze, J. Pennekamp, T. Engel, A. Zinnen,
M. Henze, and K. Wehrle, “Website Fingerprinting at Internet
Scale.” in NDSS, 2016.

[46] Y. Qin and C. Yue, “Website Fingerprinting by Power Estimation
Based Side-Channel Attacks on Android 7,” in 2018 17th IEEE
International Conference On Trust, Security And Privacy In Com-
puting And Communications/12th IEEE International Conference
On Big Data Science And Engineering (TrustCom/BigDataSE).
IEEE, 2018, pp. 1030–1039.

[47] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey,
You, Get Off of My Cloud: Exploring Information Leakage in
Third-Party Compute Clouds,” in Proceedings of the 16th ACM
Conference on Computer and Communications Security, 2009, pp.
199–212.

[48] A. Shusterman, L. Kang, Y. Haskal, Y. Meltser, P. Mittal, Y. Oren,
and Y. Yarom, “Robust Website Fingerprinting Through the
Cache Occupancy Channel,” in 28th USENIX Security Symposium
(USENIX Security 19), 2019, pp. 639–656.

[49] R. Spreitzer, S. Griesmayr, T. Korak, and S. Mangard, “Exploiting
Data-Usage Statistics for Website Fingerprinting Attacks on An-
droid,” in Proceedings of the 9th ACM Conference on Security &
Privacy in Wireless and Mobile Networks, 2016, pp. 49–60.

[50] D. Sullivan, O. Arias, T. Meade, and Y. Jin, “Microarchitectural
Minefields: 4K-Aliasing Covert Channel and Multi-Tenant Detec-
tion in Iaas Clouds.” in NDSS, 2018.

[51] M. Tan, J. Wan, Z. Zhou, and Z. Li, “Invisible Probe: Timing
Attacks with PCIe Congestion Side-channel,” in 2021 IEEE Sym-
posium on Security and Privacy (SP), may 2021, pp. 1016–1032.

[52] TensorFlow, “Convolutional Neural Network (CNN),” 2021.
[Online]. Available: https://www.tensorflow.org/tutorials/images/
cnn

[53] V. Varadarajan, Y. Zhang, T. Ristenpart, and M. Swift, “A place-
ment vulnerability study in multi-tenant public clouds,” in 24th
USENIX Security Symposium (USENIX Security 15), 2015, pp.
913–928.

[54] P. Vila and B. Köpf, “Loophole: Timing Attacks on Shared Event
Loops in Chrome,” in 26th USENIX Security Symposium (USENIX
Security 17), 2017, pp. 849–864.

[55] A. Wilen, R. Thornburg, and J. P. Schade, Introduction to PCI
Express: a hardware and software developer’s guide. Intel, 2003.

[56] Z. Wu, Z. Xu, and H. Wang, “Whispers in the Hyper-Space: High-
Bandwidth and Reliable Covert Channel Attacks Inside the Cloud,”
IEEE/ACM Transactions on Networking, vol. 23, no. 2, pp. 603–
615, 2014.

[57] Q. Xu, H. Naghibijouybari, S. Wang, N. Abu-Ghazaleh, and
M. Annavaram, “GPUGuard: mitigating contention based side and
covert channel attacks on GPUs,” in Proceedings of the ACM
International Conference on Supercomputing, 2019, pp. 497–509.

[58] W. Xu, H. Zhang, S. Jiao, D. Wang, F. Song, and Z. Liu, “Opti-
mizing Sparse Matrix Vector Multiplication Using Cache Blocking
Method on Fermi GPU,” in 2012 13th ACIS International Confer-
ence on Software Engineering, Artificial Intelligence, Networking
and Parallel/Distributed Computing. IEEE, 2012, pp. 231–235.

[59] Z. Xu, H. Wang, and Z. Wu, “A measurement study on co-
residence threat inside the cloud,” in 24th USENIX Security Sym-
posium (USENIX Security 15), 2015, pp. 929–944.

[60] Q. Yang, P. Gasti, G. Zhou, A. Farajidavar, and K. S. Balagani,
“On Inferring Browsing Activity on Smartphones via USB Power
Analysis Side-Channel,” IEEE Transactions on Information Foren-
sics and Security, vol. 12, no. 5, pp. 1056–1066, 2016.



[61] F. Yao, M. Doroslovacki, and G. Venkataramani, “Are coherence
protocol states vulnerable to information leakage?” in 2018 IEEE
International Symposium on High Performance Computer Archi-
tecture (HPCA). IEEE, 2018, pp. 168–179.

[62] Z. Zhan, Z. Zhang, S. Liang, F. Yao, and X. Koutsoukos, “Graphics
Peeping Unit: Exploiting EM Side-Channel Information of GPUs
to Eavesdrop on Your Neighbors,” in 2022 IEEE Symposium on
Security and Privacy (SP), 2022.

[63] Z. Zhan, Z. Zhang, and X. Koutsoukos, “BitJabber: The World’s
Fastest Electromagnetic Covert Channel,” in 2020 IEEE Inter-
national Symposium on Hardware Oriented Security and Trust
(HOST). IEEE, 2020, pp. 35–45.

[64] Z. Zhang, S. Liang, F. Yao, and X. Gao, “Red Alert for Power
Leakage: Exploiting Intel RAPL-Induced Side Channels,” in Pro-
ceedings of the 2021 ACM Asia Conference on Computer and
Communications Security, 2021, pp. 162–175.

[65] Z. Zhou, W. Diao, u. Liu, Z. Li, K. Zhang, and R. Liu, “Vulnerable
GPU Memory Management: Towards Recovering Raw Data from
GPU,” arXiv preprint arXiv:1605.06610, 2016.

[66] Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel, and M. Silber-
stein, “Understanding the security of discrete GPUs,” in Proceed-
ings of the General Purpose GPUs, 2017, pp. 1–11.

Appendix A.

Table 10 shows the list of websites used in this paper
for the evaluation of the website fingerprinting. This list
was created primarily according to the Alexa Top websites
ranking.

TABLE 10: The 100 websites used in this paper.
Adobe.com Fidelity.com Quora.com
Aliexpress.com Foxnews.com Realtor.com
Alipay.com Gamepedia.com Reddit.com
Allrecipes.com Github.com Rottentomatoes.com
Amazon.com Glassdoor.com Shopify.com
Aol.com Google.com Speedtest.net
Apartments.com Healthline.com Spotify.com
Apple.com Homedepot.com Stackoverflow.com
Att.com Hulu.com T-mobile.com
Baidu.com Ign.com Target.com
Bankofamerica.com Imdb.com Tripadvisor.com
Bbc.com Imgur.com Twitch.tv
Bestbuy.com Indeed.com Twitter.com
Bing.com Instagram.com Ups.com
Blogger.com Intuit.com Usa.gov
Britannica.com Irs.gov Usps.com
Businessinsider.com Linkedin.com Vk.com
Ca.gov Live.com Walmart.com
Capitalone.com Lowes.com Washingtonpost.com
Cdc.gov Mayoclinic.org Weather.com
Chase.com Merriam-webster.com Weather.gov
Cheatsheet.com Microsoft.com Webmd.com
Cnn.com Msn.com Weibo.com
Costco.com Nbcnews.com Wellsfargo.com
Craigslist.org Netflix.com Wikipedia.org
Dailymail.co.uk Nfl.com Xfinity.com
Duckduckgo.com Nih.gov Yahoo.com
Ebay.com Npr.org Yandex.com
Espn.com Nypost.com Yelp.com
Etsy.com Nytimes.com Youtube.com
Expedia.com Office.com Zillow.com
Facebook.com Paypal.com Zoom.us
Fandom.com Pinterest.com
Fedex.com Quizlet.com

Appendix B.

Table 11 shows the data transfer latencies correspond-
ing to Figure 4 in Section 3.2. Each latency in Table 11 is
the mean of 100 measurements in the corresponding sce-
nario, and for each scenario, we derive such an averaged
latency 10 times with the minimum and maximum being
reported.

TABLE 11: Data transfer latencies measured by Alice. The
first part of “Locked/Regular – Locked/Regular” indicates
whether Alice’s data resides in page-locked memory or
regular memory, and the second part indicates Bob’s.

Locked-Locked Regular-Locked Locked-Regular Regular-Regular
Min 21440 34238 20749 33406
Max 23281 40680 22982 37783
Min 21567 35451 21345 34035
Max 22685 333299 25002 347414
Min 21693 34698 21429 33297
Max 23487 339393 24917 347073
Min 23312 34698 21977 34186
Max 25539 334922 33403 348141
Min 23777 35193 21062 33891
Max 25780 45860 37475 347733
Min 30819 35112 21126 33582
Max 33078 48998 33019 357859
Min 44621 39595 20844 33235
Max 46644 52889 49793 42201
Min 72469 39595 20942 33194
Max 73474 52889 88003 51872
Min 128023 39276 21017 33314
Max 129908 53884 115199 51373

64 KB

128 KB

256 KB

512 KB

Base

4 KB

8 KB

16 KB

32 KB


